Grade XII (2023-24)

Number of Paper:

Total number of Periods: 240 (35 Minutes Each)

Time:

3 Hours

1

80

Max Marks:

No.	Units	No. of Periods	Marks
I	Numbers, Quantification and Numerical Applications	30	11
II	Algebra	20	10
	Calculus	50	15
IV	Probability Distributions	35	10
V	Inferential Statistics	10	05
VI	Index Numbers and Time-based data	30	06
VII	Financial Mathematics	50	15
VIII	Linear Programming	15	08
	Total	240	80
	Internal Assessment		20

	CLASS XII				
SI. No.	Contents	Learning Outcomes: Students will be able to NTIFICATION AND NUMERICAL A	Notes / Explanation PPLICATIONS		
1.1	Modulo Arithmetic	 Define modulus of an integer Apply arithmetic operations using modular arithmetic rules 	 Definition and meaning Introduction to modulo operator Modular addition and subtraction 		
1.2	Congruence Modulo	 Define congruence modulo Apply the definition in various problems 	 Definition and meaning Solution using congruence modulo Equivalence class 		
1.4	Alligation and Mixture	 Understand the rule of alligation to produce a mixture at a given price Determine the mean price of a mixture Apply rule of alligation 	 Meaning and Application of rule of alligation Mean price of a mixture 		
1.5	Numerical Problems Boats and Streams (upstream and downstream)	 Solve real life problems mathematic Distinguish between upstream and downstream Express the problem in the form of an equation 	 Problems based on speed of stream and the speed of boat in still water 		
	Pipes and Cisterns	 Determine the time taken by two or more pipes to fill or empty the tank 	 Calculation of the portion of the tank filled or drained by the pipe(s) in unit time 		
	Races and Games	 Compare the performance of two players w.r.t. time, distance 	•Calculation of the time taken/ distance covered / speed of each player		
1.6	Numerical Inequalities	 Describe the basic concepts of numerical inequalities Understand and write numerical inequalities 	 Comparison between two statements/situations which can be compared numerically Application of the techniques of numerical solution of algebraic inequations 		
UNIT-2	ALGEBRA				
2.1	Matrices and types of matrices	 Define matrix Identify different kinds of matrices Find the size / order of matrices 	 The entries, rows and columns of matrices Present a set of data in a matrix form 		
2.2	Equality of matrices, Transpose of a matrix, Symmetric and Skew symmetric matrix	 Determine equality of two matrices Write transpose of given matrix Define symmetric and skew symmetric matrix 	 Examples of transpose of matrix A square matrix as a sum of symmetric and skew symmetric matrix Observe that diagonal elements of skew symmetric matrices are always zero 		

2.3	Algebra of Matrices	 Perform operations like addition & subtraction on matrices of same order Perform multiplication of two matrices of appropriate order Perform multiplication of a scalar with matrix 	 Addition and Subtraction of matrices Multiplication of matrices (It can be shown to the students that Matrix multiplication is similar to multiplication of two polynomials) Multiplication of a matrix with a real number
2.4	Determinants	 Find determinant of a square matrix Use elementary properties of determinants 	 Singular matrix, Non-singular matrix AB = A B Simple problems to find determinant value
2.5	Inverse of a matrix	 Define the inverse of a square matrix Apply properties of inverse of matrices 	 Inverse of a matrix using: a) cofactors If A and B are invertible square matrices of same size, i) (AB)⁻¹=B ⁻¹A ⁻¹ ii) (A⁻¹)⁻¹ = A iii) (A^T)⁻¹ = (A⁻¹)^T
2.6	Solving system of simultaneous equations using matrix method, Cramer's rule and	 Solve the system of simultaneous equations using i) Cramer's Rule ii) Inverse of coefficient matrix Formulate real life problems into a system of simultaneous linear equations and solve it using these methods 	 Solution of system of simultaneous equations upto three variables only (non- homogeneous equations)
UNIT- 3	CALCULUS		
Differen	tiation and its	Applications	
3.1	Higher Order Derivatives	 Determine second and higher order derivatives Understand differentiation of parametric functions and implicit functions 	 Simple problems based on higher order derivatives Differentiation of parametric functions and implicit functions (upto 2nd order)
3.2	Application of Derivatives	 Determine the rate of change of various quantities Understand the gradient of tangent and normal to a curve at a given point Write the equation of tangents and normal to a curve at a given point 	 To find the rate of change of quantities such as area and volume with respect to time or its dimension Gradient / Slope of tangent and normal to the curve The equation of the tangent and normal to the curve (simple problems only)
3.3	Marginal Cost and Marginal Revenue using derivatives	 Define marginal cost and marginal revenue Find marginal cost and marginal revenue 	 Examples related to marginal cost, marginal revenue, etc.

3.4	Increasing /Decreasing Functions	 Determine whether a function is increasing or decreasing Determine the conditions for a function to be increasing or decreasing 	• Simple problems related to increasing and decreasing behaviour of a function in the given interval
3.5	Maxima and Minima	 Determine critical points of the function Find the point(s) of local maxima and local minima and corresponding local maximum and local minimum values Find the absolute maximum and absolute minimum value of a function Solve applied problems 	 A point x= c is called the critical point of f if f is defined at c and f'(c) = 0 or f is not differentiable at c To find local maxima and local minima by: i) First Derivative Test ii) Second Derivative Test contextualized real life problems
Integrat	ion and its App	olications	
3.6	Integration	 Understand and determine indefinite integrals of simple functions as anti-derivative 	 Integration as a reverse process of differentiation Vocabulary and Notations related to Integration
3.7	Indefinite Integrals as family of curves	 Evaluate indefinite integrals of simple algebraic functions by method of: i) substitution ii) partial fraction iii) by parts 	 Simple integrals based on each method (non- trigonometric function)
3.8	Definite Integrals as area under the curve	 Define definite integral as area under the curve Understand fundamental theorem of Integral calculus and apply it to evaluate the definite integral Apply properties of definite integrals to solve the problems 	 Evaluation of definite integrals using properties
3.9	Application of Integration	 Identify the region representing C.S. and P.S. graphically Apply the definite integral to find consumer surplus-producer surplus 	 Problems based on finding Total cost when Marginal Cost is given Total Revenue when Marginal Revenue is given Equilibrium price and equilibrium quantity and hence consumer and producer surplus
	tial Equations		
3.10	Differential Equations	 Recognize a differential equation Find the order and degree of a differential equation 	 Definition, order, degree and examples

3.11	Formulating and Solving Differential Equations	 Formulate differential equation Verify the solution of differential equation Solve simple differential equation 	 Formation of differential equation by eliminating arbitrary constants Solution of simple differential equations (direct integration only)
3.12	Application of Differential Equations	 Define Growth and Decay Model Apply the differential equations to solve Growth and Decay Models 	 Growth and Decay Model in Biological sciences, Economics and business, etc.
UNIT-4	PROBABILITY I	DISTRIBUTIONS	-
4.1	Probability Distribution	 Understand the concept of Random Variables and its Probability Distributions Find probability distribution of discrete random variable 	 Definition and example of discrete and continuous random variable and their distribution
4.2	Mathematical Expectation	• Apply arithmetic mean of frequency distribution to find the expected value of a random variable	• The expected value of discrete random variable as summation of product of discrete random variable by the probability of its occurrence.
4.3	Variance	 Calculate the Variance and S.D. of a random variable 	 Questions based on variance and standard deviation
4.4	Binomial Distribution	 Identify the Bernoulli Trials and apply Binomial Distribution Evaluate Mean, Variance and S.D of a binomial distribution 	• Characteristics of the binomial distribution • Binomial formula: $P(r) = {}^{n}C_{r} p^{r} q^{n-r}$ Where n = number of trials P = probability of success q = probability of failure Mean = np Variance = npq Standard Deviation = \sqrt{npq}
4.5	Poison Distribution	 Understand the Conditions of Poisson Distribution Evaluate the Mean and Variance of Poisson distribution 	• Characteristics of Poisson Probability distribution Poisson formula: $P(x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}$ • Mean = Variance = λ
4.6	Normal Distribution	 Understand normal distribution is a Continuous distribution Evaluate value of Standard normal variate Area relationship between Mean and Standard Deviation 	 Characteristics of a normal probability distribution Total area under the curve = total probability = 1 Standard Normal Variate: Z = x-μ / σ where x = value of the random variable μ = mean σ = S.D.

UNIT - 5	UNIT - 5 INFERENTIAL STATISTICS			
5.1	Population and Sample	 Define Population and Sample Differentiate between population and sample Define a representative sample from a population Differentiate between a representative and non- representative sample Draw a representative sample using simple random sampling Draw a representative sample using and systematic random sampling 	 Population data from census, economic surveys and other contexts from practical life Examples of drawing more than one sample set from the same population Examples of representative and non-representative sample Unbiased and biased sampling Problems based on random sampling using simple random sampling using simple size less than 100) 	
5.2	Parameter and Statistics and Statistical Interferences	 Define Parameter with reference to Population Define Statistics with reference to Sample Explain the relation between Parameter and Statistic Explain the limitation of Statistic to generalize the estimation for population Interpret the concept of Statistical Significance and Statistical Inferences State Central Limit Theorem Explain the relation between Population-Sampling Distribution-Sample 	 Conceptual understanding of Parameter and Statistics Examples of Parameter and Statistic limited to Mean and Standard deviation only Examples to highlight limitations of generalizing results from sample to population Only conceptual understanding of Statistical Significance/Statistical Inferences Only conceptual understanding of Sampling Distribution through simulation and graphs 	
5.3	t-Test (one sample t-test and two independent groups t-test)	 Define a hypothesis Differentiate between Null and Alternate hypothesis Define and calculate degree of freedom Test Null hypothesis and make inferences using t-test statistic for one group / two independent groups 	 Examples and non-examples of Null and Alternate hypothesis (only non- directional alternate hypothesis) Framing of Null and Alternate hypothesis Testing a Null Hypothesis to make Statistical Inferences for small sample size (for small sample size: t- test for one group and two independent groups Use of t-table 	
UNIT – 6 6.4	INDEX NUMBERS	AND TIME BASED DATA Identify time series as	 Meaning and Definition 	
0.4		chronological data		

6.5	Components of	Distinguish between different	Secular trend
0.5	Time Series	components of time series	Secular trend Seasonal variation
		components of time series	•Cyclical variation
			Irregular variation
6.6	Time Series	 Solve practical problems based 	•Fitting a straight line trend and
0.0	analysis for	on statistical data and Interpret	estimating the value
	univariate data	the result	
6.7	Secular Trend	•Understand the long term	•The tendency of the variable to
		tendency	increase or decrease over a
		londonoy	long period of time
6.8	Methods of	•Demonstrate the techniques of	 Moving Average method
	Measuring	finding trend by different	Method of Least Squares
	trend	methods	
UNIT - 7	FINANCIAL MATH		
7.1	Perpetuity,	• Explain the concept of	Meaning of Perpetuity and
	Sinking Funds	perpetuity and sinking fund	Sinking Fund
		Calculate perpetuity	Real life examples of sinking
		Differentiate between sinking	fund
		fund and saving account	 Advantages of Sinking Fund
			 Sinking Fund vs. Savings
			account
7.3	Calculation of	 Explain the concept of EMI 	Methods to calculate EMI:
	EMI	Calculate EMI using various	i) Flat-Rate Method
		methods	ii) Reducing-Balance Method
			Real life examples to calculate
			EMI of various types of loans,
			purchase of assets, etc.
7.4	Calculation of	 Explain the concept of rate of 	 Formula for calculation of
	Returns,	return and nominal rate of	Rate of Return, Nominal Rate
	Nominal Rate	return	of Return
	of Return	Calculate rate of return and	
7.5	Commonword	nominal rate of return	Magning and use of
7.5	Compound Annual Growth	Understand the concept of	 Meaning and use of Compound Annual Growth
	Rate	Compound Annual Growth Rate	Rate
	TALE	Differentiate between Compound Appual Crowth Pate	Formula for Compound Annual
		Compound Annual Growth Rate and Annual Growth Rate	Growth Rate
		Calculate Compound Annual	Clowin rate
		Growth Rate	
7.7	Linear method	Define the concept of linear	Meaning and formula for
	of Depreciation	method of Depreciation	Linear Method of Depreciation
		Interpret cost, residual value	Advantages and
		and useful life of an asset from	disadvantages of Linear
		the given information	Method
		Calculate depreciation	
UNIT - 8		AMMING	
8.1	Introduction	• Familiarize with terms related to	 Need for framing linear
	and related	Linear Programming Problem	programming problem
	terminology		•Definition of Decision Variable,
			Constraints, Objective
			function, Optimization and Non
			Negative conditions

8.2	Mathematical formulation of Linear Programming Problem	 Formulate Linear Programming Problem 	•Set the problem in terms of decision variables, identify the objective function, identify the set of problem constraints, express the problem in terms of inequations
8.3	Different types of Linear Programming Problems	 Identify and formulate different types of LPP 	 Formulate various types of LPP's like Manufacturing Problem, Diet Problem, Transportation Problem, etc.
8.4	Graphical method of solution for problems in two variables	 Draw the Graph for a system of linear inequalities involving two variables and to find its solution graphically 	 Corner Point Method for the Optimal solution of LPP Iso-cost/ Iso-profit Method
8.5	Feasible and Infeasible Regions	 Identify feasible, infeasible, bounded and unbounded regions 	 Definition and Examples to explain the terms
8.6	Feasible and infeasible solutions, optimal feasible solution	 Understand feasible and infeasible solutions Find optimal feasible solution 	 Problems based on optimization Examples of finding the solutions by graphical method

Practical: Use of spreadsheet

Graphs of an exponential function, demand and supply functions on Excel and study the nature of function at various points, maxima/minima, Matrix operations using Excel

Suggested practical using the spreadsheet

- i) Plot the graphs of functions on excel and study the graph to find out the point of maxima/minima
- ii) Probability and dice roll simulation
- iii) Matrix multiplication and the inverse of a matrix
- iv) Stock Market data sheet on excel
- v) Collect the data on weather, price, inflation, and pollution analyze the data and make meaningful inferences
- vi) Collect data from newspapers on traffic, sports activities and market trends and use excel to study future trends

List of Suggested projects (Class XI /XII)

- i) Use of prime numbers in coding and decoding of messages
- ii) Prime numbers and divisibility rules
- iii) Logarithms for financial calculations such as interest, present value, future value, profit/loss etc. with large values)
- iv) The cardinality of a set and orders of infinity
- v) Comparing sets of Natural numbers, rational numbers, real numbers and others
- vi) Use of Venn diagram in solving practical problems

- vii) Fibonacci sequence: Its' history and presence in nature
- viii) Testing the validity of mathematical statements and framing truth tables
- ix) Investigating Graphs of functions for their properties
- x) Visit the census site of India http://www.censusindia.gov.in/Census_Data_2001/Census_Data_Online/Languag e/State ment3.htm Depict the information given there in a pictorial form
- xi) Prepare a questionnaire to collect information about money spent by your friends in a month on activities like travelling, movies, recharging of the mobiles, etc. and draw interesting conclusions
- xii) Check out the local newspaper and cut out examples of information depicted by graphs. Draw your own conclusions from the graph and compare it with the analysis given in the report
- xiii) Analysis of population migration data positive and negative influence on urbanization
- xiv) Each day newspaper tells us about the maximum temperature, minimum temperature, and humidity. Collect the data for a period of 30 days and represent it graphically. Compare it with the data available for the same time period for the previous year
- xv) Analysis of career graph of a cricketer (batting average for a batsman and bowling average for a bowler). Conclude the best year of his career. It may be extended for other players also – tennis, badminton, athlete
- xvi) Vehicle registration data correlating with pollution and the number of accidents
- xvii) Visit a village near Delhi and collect data of various crops over the past few years from the farmers. Also, collect data about temperature variation and rain over the period for a particular crop. Try to find the effect of temperature and rain variations on various crops
- xviii) Choose any week of your ongoing semester. Collect data for the past 10 15 years for the amount of rainfall received in Delhi during that week. Predict the amount of rainfall for the current year
- xix) Weather prediction (prediction of monsoon from past data)
- xx) Visit Kirana shops near your home and collect the data regarding the sales of certain commodities over a month. Try to figure out the stock of a particular commodity which should be in the store in order to maximize the profit
- xxi) Stock price movement
- xxii) Risk assessments by insurance firms from data
- xxiii) Predicting stock market crash
- xxiv) Predicting the outcome of an election exit polls
- xxv) Predicting mortality of infants

Assessment Plan

- 1. Overall Assessment of the course is out of 100 marks.
- 2. The assessment plan consists of an External Exam and Internal Assessment.
- 3. External Exam will be of 03 hours duration Pen/ Paper Test consisting of 80 marks.
- 4. The weightage of the Internal Assessment is 20 marks. Internal Assessment can be a combination of activities spread throughout the semester/ academic year. Internal Assessment activities include projects and excel based practical. Teachers can choose activities from the suggested list of practical or they can plan activities of a similar nature. For data-based practical, teachers are encouraged to use data from local sources to make it more relevant for students.
- 5. Weightage for each area of internal assessment may be as under:

SI.	Area and	Assessment Area	Marks
No.	Weightage		allocated
1	Project work	Project work and record	5
	(10 marks)	Year-end Presentation/ Viva of the Project	5
2	Practical work	Performance of practical and record	5
	(10 marks)	Year-end test of any one practical	5
		Total	20